Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Publication year range
1.
3 Biotech ; 14(5): 126, 2024 May.
Article in English | MEDLINE | ID: mdl-38585411

ABSTRACT

Genus Mucuna encompasses several plant species renowned for their utilization in traditional Ayurvedic medicine for the treatment of Parkinson's disease, chiefly due to their exceptionally high L-dopa content relative to other plants. However, limited information exists regarding Mucuna laticifera, a newly identified species within the Mucuna genus. This study unveils a remarkable L-dopa content of 174.3 mg/g in M. laticifera seeds, surpassing all previously documented Mucuna species. Moreover, this research marks the first documentation of L-dopa, flavonoids, and phenolics within M. laticifera seeds. Furthermore, the aqueous extract derived from these seeds exhibits robust antioxidant properties. Investigation into its anti-inflammatory potential reveals a significant reduction in paw swelling and neutrophil infiltration at inflammatory sites in a carrageenan-induced rat model. Gene expression analysis utilizing a rat paw model demonstrates that the seed extract significantly downregulates the expression of various inflammation-related genes compared to carrageenan-treated rats. Collectively, these findings clearly substantiate the anti-inflammatory activity of M. laticifera seed extract. The exceptional L-dopa content combined with its anti-inflammatory properties position M. laticifera seeds as a promising therapeutic option for neurodegenerative diseases like Parkinson's, as well as various inflammatory conditions. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03969-w.

2.
Front Aging Neurosci ; 15: 1227203, 2023.
Article in English | MEDLINE | ID: mdl-37736325

ABSTRACT

Introduction: Advanced age is a significant factor in changes to brain physiology and cognitive functions. Recent research has highlighted the critical role of the gut microbiome in modulating brain functions during aging, which can be influenced by various factors such as apolipoprotein E (APOE) genetic variance, body mass index (BMI), diabetes, and dietary intake. However, the associations between the gut microbiome and these factors, as well as brain structural, vascular, and metabolic imaging markers, have not been well explored. Methods: We recruited 30 community dwelling older adults between age 55-85 in Kentucky. We collected the medical history from the electronic health record as well as the Dietary Screener Questionnaire. We performed APOE genotyping with an oral swab, gut microbiome analysis using metagenomics sequencing, and brain structural, vascular, and metabolic imaging using MRI. Results: Individuals with APOE e2 and APOE e4 genotypes had distinct microbiota composition, and higher level of pro-inflammatory microbiota were associated higher BMI and diabetes. In contrast, calcium- and vegetable-rich diets were associated with microbiota that produced short chain fatty acids leading to an anti-inflammatory state. We also found that important gut microbial butyrate producers were correlated with the volume of the thalamus and corpus callosum, which are regions of the brain responsible for relaying and processing information. Additionally, putative proinflammatory species were negatively correlated with GABA production, an inhibitory neurotransmitter. Furthermore, we observed that the relative abundance of bacteria from the family Eggerthellaceae, equol producers, was correlated with white matter integrity in tracts connecting the brain regions related to language, memory, and learning. Discussion: These findings highlight the importance of gut microbiome association with brain health in aging population and could have important implications aimed at optimizing healthy brain aging through precision prebiotic, probiotic or dietary interventions.

3.
Sci Rep ; 13(1): 15116, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704738

ABSTRACT

Gut dysbiosis has been identified as a crucial factor of Alzheimer's disease (AD) development for apolipoprotein E4 (APOE4) carriers. Inulin has shown the potential to mitigate dysbiosis. However, it remains unclear whether the dietary response varies depending on sex. In the study, we fed 4-month-old APOE4 mice with inulin for 16 weeks and performed shotgun metagenomic sequencing to determine changes in microbiome diversity, taxonomy, and functional gene pathways. We also formed the same experiments with APOE3 mice to identify whether there are APOE-genotype dependent responses to inulin. We found that APOE4 female mice fed with inulin had restored alpha diversity, significantly reduced Escherichia coli and inflammation-associated pathway responses. However, compared with APOE4 male mice, they had less metabolic responses, including the levels of short-chain fatty acids-producing bacteria and the associated kinases, especially those related to acetate and Erysipelotrichaceae. These diet- and sex- effects were less pronounced in the APOE3 mice, indicating that different APOE variants also play a significant role. The findings provide insights into the higher susceptibility of APOE4 females to AD, potentially due to inefficient energy production, and imply the importance of considering precision nutrition for mitigating dysbiosis and AD risk in the future.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Female , Male , Animals , Mice , Apolipoprotein E4/genetics , Apolipoprotein E3 , Dysbiosis , Inulin/pharmacology , Anti-Inflammatory Agents , Escherichia coli
4.
Nat Prod Res ; 35(13): 2239-2242, 2021 Jul.
Article in English | MEDLINE | ID: mdl-31496277

ABSTRACT

In the present study diterpene lactones were quantified in leaves and stem of different species of Andrographis collected from Western Ghats of India using reverse phase high performance liquid chromatography (RP-HPLC) method. Different populations of AA (Andrographis alata), AE (Andrographis echioides), ALn (Andrographis lineata var. lineata), ALw (Andrographis lineata var. lawii), AM (Andrographis macrobotrys), AO (Andrographis ovata), AP (Andrographis paniculata), APr (Andrographis producta) and AS (Andrographis serphyllifolia) were assessed for the amount of AG (andrographolide), NAG (neoandrographolide) and DDAG (14-deoxy-11, 12-didehydroandrographolide) in leaves and stem. The most abundant diterpenoid was AG and highest amount of 68.35 mg/g DW was recorded in a population of AP. AG was also present in leaves of ALw at considerable level (40.85 mg/g DW). NAG was optimum in the leaves of AM (98.43 to 102.03 mg/g DW). DDAG was higher in the leaves of AP (16.01 mg/g DW).


Subject(s)
Andrographis/chemistry , Diterpenes/analysis , Lactones/analysis , Plant Leaves/chemistry , Plant Stems/chemistry , Chromatography, High Pressure Liquid , Diterpenes/chemistry , Glucosides/chemistry , Tetrahydronaphthalenes/chemistry
5.
Environ Sci Pollut Res Int ; 27(2): 2027-2035, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31768952

ABSTRACT

Bioconversion of recalcitrant keratinous biomass is one of the greatest ways to utilize products of feather hydrolysis and recycle them into bionetwork. Present study revealed 87% degradation of poultry feathers within 48 h in a constructed bioreactor using Chryseobacterium sp. RBT. The resulting feather hydrolysate (FH) was rich in soluble protein (3.56 ± 0.18 mg/ml), amino acids (3.83 ± 0.20 mg/ml), and macro and micro nutrients like N (8.0302%), P (0.3876%), K (0.5532%), Cu (0.0684%), Mg (0.8078%), Mn (0.2001%), Ca (0.4832%), Zn (0.0442%), and Fe (0.0330%). HPTLC analysis of FH revealed presence of tryptophan, cysteine, methionine, phenylalanine, glycine, valine, tyrosine, lysine, leucine, and serine as the primary amino acids. Field studies were conducted to apply FH as the bioenhancer to commercially important crops like brinjal and chilli through root drenching (20%, v/v). FH showed positive impact on the growth and development of plants along with early flowering and improved crop yield. In addition, nutritional quality of brinjal and chilli in terms of protein, amino acids, reducing sugars, phenolics, flavonoids, and antioxidant was elevated. Therefore, promotion and utility of by-products generated in feather degradation would be an effective strategy focusing on sustainable agricultural practices and problems associated with the waste management.


Subject(s)
Biomass , Bioreactors/microbiology , Chryseobacterium/metabolism , Feathers , Poultry , Animals , Fertilizers , Vegetables
6.
J Am Coll Nutr ; 38(5): 447-456, 2019 07.
Article in English | MEDLINE | ID: mdl-30676876

ABSTRACT

Objective: In the present investigation, the effect of different cooking processes on L-DOPA level, phenolics contents, in vitro protein (IVPD) and starch digestibility (IVSD), and proximate composition with in vitro anti-inflammatory and antioxidant potential of Mucuna macrocarpa (MM) has been evaluated. Methods: The L-DOPA and major phenolics acids quantification of processed samples were done by a reverse-phase high-performance liquid chromatography (RP-HPLC) technique. Proximate composition, elemental quantification, and in vitro protein and starch digestibility of the samples were carried out by using spectrophotometric analysis. The anti-inflammatory activities of samples were evaluated by a human red blood cells (HRBCs) membrane stabilization test and bovine serum albumin (BSA) anti-denaturation assay. Antioxidant potential of processed beans was carried out by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and N,N-dimethyl-p-phenylendiamine (DMPD) assays and ferric reducing/antioxidant power (FRAP) assay. Results: The processed MM beans showed a significant reduction of L-DOPA (6.30%), phytic acid (25.78%), tannin (19.79%), and saponin (25.59%) in the boiling, autoclaving, and roasting processes. RP-HPLC quantification of major phenolics acids was also affected by the differential process as compare to the raw seed sample. The processed seeds also showed considerable improvement of in vitro protein (26.93%) and starch (20.30%) digestibility, whereas the anti-inflammatory potential and antioxidant potential of MM beans were decreased in the processed samples, indicating a reduction of antioxidant molecules. Conclusion: The differential process showed considerable changes in the proximate composition, in vitro digestibility, and biological potential. The present study recommends the utilization of MM beans after autoclaving and boiling for maximum nutritional potential with health benefits.


Subject(s)
Cooking/methods , Digestion , Fabaceae , Levodopa/pharmacology , Mucuna , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Chromatography, High Pressure Liquid , Dietary Proteins/metabolism , Humans , Nutritive Value , Phenols/pharmacology , Seeds/chemistry , Starch/metabolism
7.
J Am Coll Nutr ; 38(4): 364-372, 2019.
Article in English | MEDLINE | ID: mdl-30589617

ABSTRACT

OBJECTIVE: This investigation was undertaken to optimize the effective extraction of total phenolics content (TPC), total flavonoids content (TFC), and antioxidant activity from the Mucuna macrocarpa (MM) beans. An ultrasound-assisted extraction (UAE) technique with water as an effective solvent was proposed for the response surface methodology (RSM) optimization. METHODS: A three-level, two-factor central composite design (CCD) was employed to reveal the optimal points of variables. Different extraction times (5, 10, 15 minutes) and ultrasonic power levels (10, 20, 30 W) were used for the optimization. The experimental runs given by the RSM were evaluated for TPC, TFC, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (RSA), and N,N-dimethyl-p-phenylenediamine (DMPD) RSA and ferric reducing antioxidant power (FRAP). RESULTS: The predicted times for maximum extraction of TPC (186.61 mg GAE g-1), TFC (148.87 mg QUE g-1), and DPPH RSA (99.37%), and DMPD RSA (50.58%) and FRAP (2.38 O.D. at 593 nm) were 12.57, 12.84, 12.43, 12.97, and 13.24 min, and ultrasonic power levels were found to be 27.30, 26.76, 26.22, 27.03, and 27.84 W, respectively. Reverse-phase high-performance liquid chromatography (RP-HPLC) analysis of phenolics compounds from the RSM optimized sample showed tannic acid (48.09 ± 1.92 mg/g), gallic acid (1.17 ± 0.19 mg/g), p-coumaric acid (0.56 ± 0.03 mg/g), and p-hydroxybenzoic acid (0.049 ± 0.01 mg/g) content. CONCLUSION: Water and ultrasonication were found to be an effective extraction solvent and technique. RSM was effectively employed to investigate the optimal process conditions for the maximum extraction of TPC, TFC, and antioxidant compounds from the MM beans. Further, MM beans can be explored as a prominent antioxidant source for the treatment of several disorders.


Subject(s)
Flavonoids/chemistry , Mucuna/chemistry , Phenols/chemistry , Plant Extracts/chemistry , Seeds/chemistry , Ultrasonics , Antioxidants , Water
8.
Chemosphere ; 194: 306-315, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29216550

ABSTRACT

In the present study, sorption and detoxification of malachite green (MG) dye was executed using biochar resulting after pyrolysis of agro-industrial waste at 400, 600 and 800 °C. Maximum sorption of MG dye (3000 mg/L) was observed on the sugarcane bagasse biochar (SCB) prepared at 800 °C. The interactive effects of different factors like dye concentration, time, pH and temperature on sorption of MG dye were investigated using response surface methodology (RSM). Optimum MG dye concentration, contact time, temperature and pH predicted through Box-Behnken based RSM model were 3000 mg/L MG dye, 51.89 min, 60 °C and 7.5, respectively. ANOVA analysis displayed the non-significant lack of fit value (0.4566), whereas, the predicted correlation coefficient values (R2 0.8494) were reasonably in agreement with the adjusted value (R2 0.9363) demonstrating highly significant model for MG dye sorption. The applicability of this model was also checked through F- test (30.39) with lower probability (0.0001) value. Furthermore, the characterization of SCB was performed using fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), Brunauer-Emmett-Teller surfaces (BET), total organic carbon (TOC) and atomic absorption spectroscopy (AAS). Phyto-toxicity and cytogenotoxicity studies showed successful removal of MG dye using SCB. In addition, the batch sorption studies for reutilization of SCB revealed that the SCB was effective in removal of MG for five repeated cycles. This technology would be effective for treating the toxic textile effluent released from the textile industries.


Subject(s)
Adsorption , Charcoal/chemistry , Rosaniline Dyes/chemistry , Cellulose , Industrial Waste , Models, Theoretical , Mutagenicity Tests , Rosaniline Dyes/toxicity , Saccharum , Spectrum Analysis , Temperature , Textile Industry , X-Ray Diffraction
9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-700082

ABSTRACT

Objective:To investigate L-3,4-dihydroxyphenylalanine (L-dopa,anfi-Parkinson drug),anti-inflammatory activity,proximate nutritional composition and antioxidant potential of Mucuna macrocarpa (M.macrocarpa) beans.Methods:L-dopa content was determined and quantified by high performance thin layer chromatography and reversed phase high-performance liquid chromatography (RPHPLC) methods.Anti-inflammatory activity was performed by in vitro protein denaturation inhibition and human red blood cell membrane stabilisation activity.Proximate composition and elemental analysis were also investigated.The antioxidant potential (2,2-diphenyl-1-picrylhydrazyl,N-N-dimethyl-phenylenediamine and ferric-reducing antioxidant power) of M.macrocarpa beans were evaluated by using different extraction solvents.The RP-HPLC analysis also quantified significant phenolics such as gallic acid,tannic acid,p-hydroxybenzoic acid and p-coumaric acid.Results:RP-HPLC quantification revealed that M.macrocarpa beans contain a high level of L-dopa [(115.41 ± 0.985) mg/g] which was the highest among the Mucuna species from Indian sub-continent.Water extract of seed powder showed strong antiinflammatory and antioxidant potential.Proximate composition of M.macrocarpa beans revealed numerous nutritional and anti-nutritional components.RP-HPLC analysis of major phenolics such as tannic acid (43.795 mg/g),gallic acid (0.864 mg/g),p-coumafic acid (0.364 mg/g) and p-hydroxybenzoic acid (0.036 mg/g) quantified successfully from M.macrocarpa beans respectively.Conclusions:This study suggests that M.macrocarpa is a potential source of L-dopa with promising anti-inflammatory,antioxidant and nutritional benefits.

SELECTION OF CITATIONS
SEARCH DETAIL
...